待核查项1: "香蕉内部的甲硫氨酸在一系列激活、催化的作用下生成乙烯。"
待核查项2: "作为呼吸跃变型水果,香蕉成熟时呼吸速率和乙烯含量会升高[1]。引用:[1] Fukano Yuya , Tachiki Yuuya. (2021). Evolutionary ecology of climacteric and non-climacteric fruitsBiol. The Royal Society, 17(9)."
待核查项3: "同时伴随乙烯的急剧生成,呼吸速率也会加快[2]。引用:[2] Alonso-Salinas, R., López-Miranda, S., Pérez-López, A. J., & Acosta-Motos, J. R. (2024). Novel ethylene-blocking nanocomposites for extended shelf-life of climacteric fruits. Nature Food, 5(4), 298-310. https://doi.org/10.1038/s43016-024-00942-x"
让我们开始!
Search
Fukano Yuya Tachiki Yuuya 2021 Evolutionary ecology of climacteric and non-climacteric fruits Royal Society我已经找到了关于引用[1]的信息,现在我需要继续核查其他信息。首先,我将检查引用[2]的准确性。
Search
Alonso-Salinas, R., López-Miranda, S., Pérez-López, A. J., & Acosta-Motos, J. R. (2024). Novel ethylene-blocking nanocomposites for extended shelf-life of climacteric fruits. Nature Food我需要进一步搜索引用[2]的信息,看看是否能找到更多关于这篇文章的细节。
Search
"Novel ethylene-blocking nanocomposites for extended shelf-life of climacteric fruits" Nature Food 2024我看不到这篇引用[2]的文章存在的证据。让我尝试在Nature Food期刊网站上直接搜索。
Search
"Novel ethylene-blocking nanocomposites" OR Alonso-Salinas Nature Food 2024, sourced from nature.com已核查项1:事实陈述2与引用[1]的关联性及准确性:"作为呼吸跃变型水果,香蕉成熟时呼吸速率和乙烯含量会升高[1]。引用:[1] Fukano Yuya , Tachiki Yuuya. (2021). Evolutionary ecology of climacteric and non-climacteric fruitsBiol. The Royal Society, 17(9)."
待核查项1:"香蕉内部的甲硫氨酸在一系列激活、催化的作用下生成乙烯。"
待核查项2:事实陈述3与引用[2]的关联性及准确性:"同时伴随乙烯的急剧生成,呼吸速率也会加快[2]。引用:[2] Alonso-Salinas, R., López-Miranda, S., Pérez-López, A. J., & Acosta-Motos, J. R. (2024). Novel ethylene-blocking nanocomposites for extended shelf-life of climacteric fruits. Nature Food, 5(4), 298-310. https://doi.org/10.1038/s43016-024-00942-x"
待核查项3:引用[1]中期刊 "Biol. The Royal Society" 的准确名称及权威性。
让我先检查甲硫氨酸在香蕉乙烯生物合成中的作用。
Search
methionine ethylene biosynthesis pathway banana fruit ripening我需要更具体地搜索甲硫氨酸在香蕉乙烯生物合成中的作用,以及这个过程中的具体生化途径。
Search
甲硫氨酸 乙烯生物合成途径 香蕉成熟我需要更深入地了解乙烯生物合成途径的具体步骤,特别是甲硫氨酸如何转化为乙烯。
Search
plant ethylene biosynthesis pathway methionine ACC Yang cycle我需要查看更多关于杨氏循环(Yang Cycle)的详细信息,这是乙烯生物合成的关键途径。
Search
Yang Cycle ethylene biosynthesis methionine ACC synthase ACC oxidase已核查项1:事实陈述1:"香蕉内部的甲硫氨酸在一系列激活、催化的作用下生成乙烯。"
已核查项2:事实陈述2与引用[1]的关联性及准确性:"作为呼吸跃变型水果,香蕉成熟时呼吸速率和乙烯含量会升高[1]。引用:[1] Fukano Yuya , Tachiki Yuuya. (2021). Evolutionary ecology of climacteric and non-climacteric fruitsBiol. The Royal Society, 17(9)."
待核查项1:事实陈述3与引用[2]的关联性及准确性:"同时伴随乙烯的急剧生成,呼吸速率也会加快[2]。引用:[2] Alonso-Salinas, R., López-Miranda, S., Pérez-López, A. J., & Acosta-Motos, J. R. (2024). Novel ethylene-blocking nanocomposites for extended shelf-life of climacteric fruits. Nature Food, 5(4), 298-310. https://doi.org/10.1038/s43016-024-00942-x"
10.1038/s43016-024-00942-x
) 和作者、标题等信息,再次严格核查文献[2]的真实性,特别是在《Nature Food》期刊官网。待核查项2:引用[1]中期刊 "Biology Letters" 的权威性。
待核查项3:引用[2]中提及的期刊《Nature Food》的权威性。
让我首先检查引用[2]的真实性和内容。
Search
Alonso-Salinas, R., López-Miranda, S., Pérez-López, A. J., & Acosta-Motos, J. R. (2024). Novel ethylene-blocking nanocomposites for extended shelf-life of climacteric fruits. Nature Food DOI:10.1038/s43016-024-00942-x我没有找到有关引用[2]的信息。让我尝试搜索Nature Food期刊2024年的出版物,看是否能找到相关文章。
Search
Nature Food 2024 volume 5 issue 4 ethylene climacteric fruits我需要继续搜索有关引用[2]的信息。让我尝试使用不同的搜索策略,直接搜索DOI号。
Search
10.1038/s43016-024-00942-x我现在需要搜索更多关于呼吸跃变型水果和乙烯关系的信息,以便核查原文中的陈述。
Search
climacteric fruits ethylene production respiration rate banana ripening已核查项1:事实陈述1:"香蕉内部的甲硫氨酸在一系列激活、催化的作用下生成乙烯。"
已核查项2:事实陈述2与引用[1]的关联性及准确性:"作为呼吸跃变型水果,香蕉成熟时呼吸速率和乙烯含量会升高[1]。引用:[1] Fukano Yuya , Tachiki Yuuya. (2021). Evolutionary ecology of climacteric and non-climacteric fruitsBiol. The Royal Society, 17(9)."
已核查项3:引用[2]的真实性:"引用:[2] Alonso-Salinas, R., López-Miranda, S., Pérez-López, A. J., & Acosta-Motos, J. R. (2024). Novel ethylene-blocking nanocomposites for extended shelf-life of climacteric fruits. Nature Food, 5(4), 298-310. https://doi.org/10.1038/s43016-024-00942-x"
已核查项4:事实陈述3 "同时伴随乙烯的急剧生成,呼吸速率也会加快" 的部分佐证。
待核查项1:引用[1]中期刊 "Biology Letters" 的权威性。
待核查项2:引用[2]中提及的期刊《Nature Food》的权威性。
让我先查询Biology Letters期刊的权威性。
Search
Biology Letters journal impact factor Royal Society publishing peer-reviewed我将继续查询Nature Food期刊的权威性,以及进一步核实引用[2]的文献信息。
Search
Nature Food journal impact factor authority Nature publishing group让我继续查询引用[2]中提到的文章,看看是否能找到更多信息。
Search
Alonso-Salinas, R., López-Miranda, S., Pérez-López, A. J., & Acosta-Motos, J. R. (2024). Novel ethylene-blocking nanocomposites for extended shelf-life of climacteric fruits我需要进一步搜索关于香蕉作为呼吸跃变型水果的信息,以及乙烯与呼吸速率的关系。
Search
香蕉 呼吸跃变型水果 乙烯 呼吸速率 关系 科学研究已核查项1:事实陈述1:"香蕉内部的甲硫氨酸在一系列激活、催化的作用下生成乙烯。"
已核查项2:事实陈述2与引用[1]的关联性及准确性:"作为呼吸跃变型水果,香蕉成熟时呼吸速率和乙烯含量会升高[1]。引用:[1] Fukano Yuya , Tachiki Yuuya. (2021). Evolutionary ecology of climacteric and non-climacteric fruitsBiol. The Royal Society, 17(9)."
已核查项3:引用[2]的真实性(DOI层面):"引用:[2] Alonso-Salinas, R., López-Miranda, S., Pérez-López, A. J., & Acosta-Motos, J. R. (2024). Novel ethylene-blocking nanocomposites for extended shelf-life of climacteric fruits. Nature Food, 5(4), 298-310. https://doi.org/10.1038/s43016-024-00942-x"
已核查项4:事实陈述3 "同时伴随乙烯的急剧生成,呼吸速率也会加快" 的初步佐证。
已核查项5:引用[1]中期刊 "Biology Letters" 的权威性。
已核查项6:引用[2]中提及的期刊《Nature Food》的权威性。
待核查项1:事实陈述3与引用[2]的关联性及准确性(文献内容层面):"同时伴随乙烯的急剧生成,呼吸速率也会加快[2]。引用:[2] Alonso-Salinas, R., López-Miranda, S., Pérez-López, A. J., & Acosta-Motos, J. R. (2024). Novel ethylene-blocking nanocomposites for extended shelf-life of climacteric fruits. Nature Food, 5(4), 298-310."
https://mdpi-res.com/bookfiles/book/10407/Fruits_Quality_and_Sensory_Analysis.pdf
),看其是否包含与用户材料中事实陈述3及引用[2]描述相符的内容。让我继续搜索关于作者Alonso-Salinas等人的文章,特别是关于乙烯阻断纳米复合材料的研究。
Search
Alonso-Salinas, R., López-Miranda, S., Pérez-López, A. J., & Acosta-Motos, J. R. Strategies to Delay Ethylene-Mediated Ripening in Climacteric Fruits我需要进一步查看这篇文章的详细内容,以确定它是否与用户材料中引用的文章相关。
Opens a specified webpage and retrieves its main textual content
https://www.mdpi.com/2311-7524/10/8/840{'originUrl': 'https://www.mdpi.com/2311-7524/10/8/840', 'title': 'Strategies to Delay Ethylene-Mediated Ripening in Climacteric Fruits: Implications for Shelf Life Extension and Postharvest Quality', 'text': 'All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess. Original Submission Date Received: . Author / Affiliation / Email Need Help? Support Find support for a specific problem in the support section of our website. Get Support Feedback Please let us know what you think of our products and services. Give Feedback Information Visit our dedicated information section to learn more about MDPI. Get Information clear Font Type: Arial Georgia Verdana Open AccessFeature PaperReview by Ramiro Alonso-SalinasRamiro Alonso-Salinas 1,†, Santiago López-MirandaSantiago López-Miranda 1,2,†, Antonio José Pérez-LópezAntonio José Pérez-López 1,2 and José Ramón Acosta-MotosJosé Ramón Acosta-Motos 1,2,* 1 Plant Biotechnology for Food and Agriculture Group (BioVegA2), Universidad Católica San Antonio de Murcia, Avenida de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain 2 Plant Biotechnology, Agriculture and Climate Resilience Group, UCAM-CEBAS-CSIC, Associated Unit to CSIC by CEBAS-CSIC, 30100 Murcia, Spain * Author to whom correspondence should be addressed. † These authors contributed equally to this work. Submission received: 26 June 2024 / Revised: 25 July 2024 / Accepted: 5 August 2024 / Published: 8 August 2024 Abstract : Climacteric fruits undergo a characteristic ripening process regulated by ethylene, a key plant hormone. Extending the shelf life of these fruits while preserving their postharvest quality poses a significant challenge for the food industry. This review provides a comprehensive overview of physiological and molecular strategies to delay ethylene-mediated ripening in climacteric fruits and their impact on shelf life, postharvest quality, sensory attributes, and volatile compounds. Additionally, it examines the role of ethylene in fruit ripening, analysing various ethylene managing strategies including ethylene inhibitors, ethylene adsorbents, and ethylene scavengers by catalytic oxidation. This review concludes with future research directions including molecular and genetic approaches for reducing ethylene production or responsiveness in fruits, integrated strategies, environmental considerations, and commercial applications for improving postharvest handling and fruit quality. 1. Introduction Ripening is a complex, genetically programmed, and irreversible phenomenon involving a series of physiological, biochemical, and organoleptic changes. Since this process is unstoppable, there is a finite time for commercialization and consumption where the product exhibits desirable quality attributes. Once this time has elapsed, ripening be ...'}
我需要更多关于这篇文章的信息,特别是完整的内容,以确定它是否与用户材料中引用的文章相关。让我查看ResearchGate上的版本,可能会有更完整的信息。
Opens a specified webpage and retrieves its main textual content
https://www.researchgate.net/publication/382984654_Strategies_to_Delay_Ethylene-Mediated_Ripening_in_Climacteric_Fruits_Implications_for_Shelf_Life_Extension_and_Postharvest_Quality{'originUrl': 'https://www.researchgate.net/publication/382984654_Strategies_to_Delay_Ethylene-Mediated_Ripening_in_Climacteric_Fruits_Implications_for_Shelf_Life_Extension_and_Postharvest_Quality', 'title': '(PDF) Strategies to Delay Ethylene-Mediated Ripening in Climacteric Fruits: Implications for Shelf Life Extension and Postharvest Quality', 'text': "Climacteric fruits undergo a characteristic ripening process regulated by ethylene, a key plant hormone. Extending the shelf life of these fruits while preserving their postharvest quality poses a significant challenge for the food industry. This review provides a comprehensive overview of physiological and molecular strategies to delay ethylene-mediated ripening in climacteric fruits and their impact on shelf life, postharvest quality, sensory attributes, and volatile compounds. Additionally, it examines the role of ethylene in fruit ripening, analysing various ethylene managing strategies including ethylene inhibitors, ethylene adsorbents, and ethylene scavengers by catalytic oxidation. This review concludes with future research directions including molecular and genetic approaches for reducing ethylene production or responsiveness in fruits, integrated strategies, environmental considerations, and commercial applications for improving postharvest handling and fruit quality. Figures - available from: Horticulturae This content is subject to copyright. Discover the world's research 25+ million members 160+ million publication pages 2.3+ billion citations Join for free Citation: Alonso-Salinas, R.; López-Miranda, S.; Pérez-López, A.J.; Acosta-Motos J.R. Strategies to Delay Ethylene-Mediated Ripening in Climacteric Fruits: Implications for Shelf Life Extension and Postharvest Quality. Horticulturae 2024,10, 840. https://doi.org/10.3390/ horticulturae10080840 Academic Editor: Kazuo Ichimura Received: 26 June 2024 Revised: 25 July 2024 Accepted: 5 August 2024 Published: 8 August 2024 Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Review Strategies to Delay Ethylene-Mediated Ripening in Climacteric Fruits: Implications for Shelf Life Extension and Postharvest Quality Ramiro Alonso-Salinas 1, † , Santiago López-Miranda 1, 2, † , Antonio JoséPérez-López 1,2 and JoséRamón Acosta-Motos 1,2,* 1Plant Biotechnology for Food and Agriculture Group (BioVegA2), Universidad Católica San Antonio de Murcia, Avenida de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain; ralonso4@alu.ucam.edu (R.A.-S.); slmiranda@ucam.edu (S.L.-M.); ajperez@ucam.edu (A.J.P.-L.) 2Plant Biotechnology, Agriculture and Climate Resilience Group, UCAM-CEBAS-CSIC, Associated Unit to CSIC by CEBAS-CSIC, 30100 Murcia, Spain *Correspondence: jracosta@ucam.edu †These authors contributed equally to this work. Abstract: Climacteric fruits undergo a characteristic ripening process regulated by ethylene, a key plant hormone. Extending the shelf life of these fruits while preserving their postharvest quality poses a significant challenge for the food industry. This review provides a comprehensive overview of physiological and molecular strategies to delay ethylene-mediated ripening in climacteric ..."}
我需要查找更多关于这篇文章的信息,特别是完整内容,以确定它是否与用户材料中引用的文章相关。让我尝试搜索更具体的信息。
Search
Alonso-Salinas Novel ethylene-blocking nanocomposites for extended shelf-life of climacteric fruits Nature Food 2024已核查项1:事实陈述1:"香蕉内部的甲硫氨酸在一系列激活、催化的作用下生成乙烯。"
已核查项2:事实陈述2与引用[1]的关联性及准确性:"作为呼吸跃变型水果,香蕉成熟时呼吸速率和乙烯含量会升高[1]。引用:[1] Fukano Yuya , Tachiki Yuuya. (2021). Evolutionary ecology of climacteric and non-climacteric fruitsBiol. The Royal Society, 17(9)."
已核查项3:引用[2]的真实性(DOI层面):"引用:[2] Alonso-Salinas, R., López-Miranda, S., Pérez-López, A. J., & Acosta-Motos, J. R. (2024). Novel ethylene-blocking nanocomposites for extended shelf-life of climacteric fruits. Nature Food, 5(4), 298-310. https://doi.org/10.1038/s43016-024-00942-x"
已核查项4:事实陈述3 "同时伴随乙烯的急剧生成,呼吸速率也会加快" 的初步佐证。
已核查项5:引用[1]中期刊 "Biology Letters" 的权威性。
已核查项6:引用[2]中提及的期刊《Nature Food》的权威性。
已核查项7:引用[2]的文献信息与作者团队最新相关研究的对比:"引用:[2] Alonso-Salinas, R., López-Miranda, S., Pérez-López, A. J., & Acosta-Motos, J. R. (2024). Novel ethylene-blocking nanocomposites for extended shelf-life of climacteric fruits. Nature Food, 5(4), 298-310."
待核查项1:事实陈述3与引用[2]的关联性及准确性(文献内容层面):"同时伴随乙烯的急剧生成,呼吸速率也会加快[2]。引用:[2] Alonso-Salinas, R., López-Miranda, S., Pérez-López, A. J., & Acosta-Motos, J. R. (2024). Novel ethylene-blocking nanocomposites for extended shelf-life of climacteric fruits. Nature Food, 5(4), 298-310."
让我查看一下MDPI的PDF文件,看是否有更多关于这篇文章的信息。
Opens a specified webpage and retrieves its main textual content
https://mdpi-res.com/bookfiles/book/10407/Fruits_Quality_and_Sensory_Analysis.pdf?v=1736526641{'originUrl': 'https://mdpi-res.com/bookfiles/book/10407/Fruits_Quality_and_Sensory_Analysis.pdf?v=1736526641', 'title': 'A9Rmzeshk_eeuzlr_els.tmp', 'text': 'mdpi.com/journal/horticulturae\nSpecial Issue Reprint\nFruits Quality and \nSensory Analysis\nEdited by \nPaola Sánchez-Bravo and Luis Noguera-Artiaga\n\x0cFruits Quality and Sensory Analysis\n\x0c\x0cFruits Quality and Sensory Analysis\nGuest Editors\nPaola S´anchez-Bravo\nLuis Noguera-Artiaga\nBasel • Beijing • Wuhan • Barcelona • Belgrade • Novi Sad • Cluj • Manchester\n\x0cGuest Editors\nPaola S´anchez-Bravo\nUniversidad Miguel\nHern´andez de Elche (UMH)\nOrihuela\nSpain\nLuis Noguera-Artiaga\nUniversidad Miguel\nHern´andez de Elche (UMH)\nOrihuela\nSpain\nEditorial Office\nMDPI AG\nGrosspeteranlage 5\n4052 Basel, Switzerland\nThis is a reprint of the Special Issue, published open access by the journal Horticulturae (ISSN\n2311-7524), freely accessible at:\nhttps://www.mdpi.com/journal/horticulturae/special issues/\nFruits Quality Sensory Analysis.\nFor citation purposes, cite each article independently as indicated on the article page online and as\nindicated below:\nLastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.\nISBN 978-3-7258-2993-4 (Hbk)\nISBN 978-3-7258-2994-1 (PDF)\nhttps://doi.org/10.3390/books978-3-7258-2994-1\n© 2025 by the authors. Articles in this book are Open Access and distributed under the Creative\nCommons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms\nand conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)\nlicense (https://creativecommons.org/licenses/by-nc-nd/4.0/).\n\x0cContents\nAbout the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii\nPaola S´anchez-Bravo and Luis Noguera-Artiaga\nFruits Quality and Sensory Analysis\nReprinted from: Horticulturae 2024, 10, 1279, https://doi.org/10.3390/horticulturae10121279 . .\n1\nSergio Arias-Mart´ınez, Guadalupe Oyoque-Salcedo, Oscar Giovanni Guti´errez-C´ardenas,\nErnesto Oregel-Zamudio and Jes´us Rub´en Torres-Garc´ıa\nComparative Metabolomic Fingerprinting Analysis of Tomato Fruits from Physalis Species in\nMexico’s Balsas Basin\nReprinted from: Horticulturae 2024, 10, 600, https://doi.org/10.3390/horticulturae10060600 . . .\n4\nDasha Mihaylova, Aneta Popova, Ivayla Dincheva and Svetla Pandova\nHS-SPME-GC–MS Profiling of Volatile Organic Compounds and Polar and Lipid Metabolites of\nthe “Stendesto” Plum–Apricot Kernel with Reference to Its Parents\nReprinted from: Horticulturae 2024, 10, 257, https://doi.org/10.3390/horticulturae10030257 . . .\n16\nRaluca A. Mihai,\nDiana C. Ortiz-Pillajo,\nKaroline M. Iturralde-Proa˜no,\nM´onica Y.\nVinueza-Pullotasig, Leonardo A. Sisa-Tolagas´ı, Mary L. Villares-Ledesma, et al.\nComprehensive Assessment of Coffee Varieties (Coffea arabica L.; Coffea canephora L.) from\nCoastal, Andean, and Amazonian Regions of Ecuador; A Holistic Evaluation of Metabolism,\nAntioxidant Capacity and Sensory Attributes\nReprinted from: Horticulturae 2024, 10, 200, https://doi.org/10.3390/horticulturae10030200 . . .\n32\nYing Nie, Jiazhang Huang, Rui Liu, Pei Wang, Peng Liu, ...'}
让我继续查看这个PDF文件的内容,看是否包含我们正在寻找的文章。
这是一本由Paola Sánchez-Bravo和Luis Noguera-Artiaga编辑的《水果质量与感官分析》特刊,收录于MDPI出版的《园艺学》(Horticulturae)期刊。该特刊汇集了12篇关于水果质量和感官分析的研究文章,涵盖了番茄、杏子、咖啡、樱桃、开心果、猕猴桃、蘑菇、梨和橙子等多种水果。研究内容包括:植物代谢组学与感官特性的关联;种植环境(温度、土壤、海拔)对水果功能性和感官品质的影响;果皮颜色与内部品质的关系;砧木-品种组合对产量和品质的影响;以及采后处理技术(如高锰酸钾过滤器、紫外线辐射等)对水果保鲜的效果。特刊还包含两篇综述文章,分别关于延缓依赖乙烯成熟的策略以及新兴技术在延长新鲜水果保质期方面的应用。编者强调,为满足消费者对更营养、功能性和可持续食品的需求,需要从种植到采收的全过程控制水果品质参数,以保持生物活性成分的完整性和感官品质。
网页内容中确实包含Alonso-Salinas等人关于乙烯阻断技术的相关文章信息。具体来说,在特刊目录中列出了两篇Ramiro Alonso-Salinas作为第一作者的文章:
第一篇文章标题为"Effect of Combination of KMnO4 Oxidation and UV-C Radiation on Postharvest Quality of Refrigerated Pears cv. 'Ercolini'"(高锰酸钾氧化与UV-C辐射组合对冷藏'Ercolini'梨采后品质的影响),发表于《Horticulturae》2022年第8卷第1078期。该文章研究使用高锰酸钾过滤器结合紫外线辐射和恒定气流来促进乙烯与氧化剂的接触,在1°C和8°C条件下优化"Ercolini"梨的采后保存,维持其物理化学品质(重量、大小、硬度、抗氧化能力等)并改善其感官品质属性(与绿色水果相关的风味和气味)。
第二篇文章标题为"Strategies to Delay Ethylene-Mediated Ripening in Climacteric Fruits: Implications for Shelf Life Extension and Postharvest Quality"(延缓依赖乙烯成熟的策略:对保质期延长和采后品质的影响),发表于《Horticulturae》2024年第10卷第840期。这是一篇综述文章,全面概述了延缓依赖乙烯成熟的策略及其对水果保质期、感官属性和挥发性化合物含量的影响。
虽然标题中没有直接提到"Novel ethylene-blocking nanocomposites",但第一篇文章确实研究了一种阻断乙烯作用的技术(高锰酸钾氧化与UV-C辐射组合),而第二篇综述文章则涵盖了延缓乙烯介导的成熟策略,可能包含了纳米复合材料相关内容。这两篇文章都与乙烯阻断技术密切相关,可以作为进一步研究的重要参考。
https://www.mdpi.com/journal/horticulturae/special_issues/Fruits_Quality_Sensory_Analysis - 特刊主页链接,上下文为编者在介绍特刊目的时提供的链接
https://doi.org/10.3390/horticulturae8111078 - Ramiro Alonso-Salinas等人关于高锰酸钾氧化与UV-C辐射组合对冷藏梨采后品质影响的文章链接
https://doi.org/10.3390/horticulturae10080840 - Ramiro Alonso-Salinas等人关于延缓依赖乙烯成熟策略的综述文章链接
https://doi.org/10.3390/books978-3-7258-2994-1 - 特刊完整电子书的DOI链接
https://www.mdpi.com/journal/horticulturae - 《园艺学》期刊主页链接
网页内容中没有提供任何图片链接或图片内容,只有文字信息。因此无法提取与问题相关的图片。
让我搜索一下Alonso-Salinas团队的相关文章,看看是否能找到更多关于"Novel ethylene-blocking nanocomposites"的信息。
Search
Alonso-Salinas R. López-Miranda S. Pérez-López A. J. Acosta-Motos J. R. Novel ethylene-blocking nanocomposites让我查看一下Alonso-Salinas团队的这篇综述文章,看看是否包含我们正在寻找的信息。
Opens a specified webpage and retrieves its main textual content
https://www.mdpi.com/2311-7524/10/8/840{'originUrl': 'https://www.mdpi.com/2311-7524/10/8/840', 'title': 'Strategies to Delay Ethylene-Mediated Ripening in Climacteric Fruits: Implications for Shelf Life Extension and Postharvest Quality', 'text': 'All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess. Original Submission Date Received: . Author / Affiliation / Email Need Help? Support Find support for a specific problem in the support section of our website. Get Support Feedback Please let us know what you think of our products and services. Give Feedback Information Visit our dedicated information section to learn more about MDPI. Get Information clear Font Type: Arial Georgia Verdana Open AccessFeature PaperReview by Ramiro Alonso-SalinasRamiro Alonso-Salinas 1,†, Santiago López-MirandaSantiago López-Miranda 1,2,†, Antonio José Pérez-LópezAntonio José Pérez-López 1,2 and José Ramón Acosta-MotosJosé Ramón Acosta-Motos 1,2,* 1 Plant Biotechnology for Food and Agriculture Group (BioVegA2), Universidad Católica San Antonio de Murcia, Avenida de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain 2 Plant Biotechnology, Agriculture and Climate Resilience Group, UCAM-CEBAS-CSIC, Associated Unit to CSIC by CEBAS-CSIC, 30100 Murcia, Spain * Author to whom correspondence should be addressed. † These authors contributed equally to this work. Submission received: 26 June 2024 / Revised: 25 July 2024 / Accepted: 5 August 2024 / Published: 8 August 2024 Abstract : Climacteric fruits undergo a characteristic ripening process regulated by ethylene, a key plant hormone. Extending the shelf life of these fruits while preserving their postharvest quality poses a significant challenge for the food industry. This review provides a comprehensive overview of physiological and molecular strategies to delay ethylene-mediated ripening in climacteric fruits and their impact on shelf life, postharvest quality, sensory attributes, and volatile compounds. Additionally, it examines the role of ethylene in fruit ripening, analysing various ethylene managing strategies including ethylene inhibitors, ethylene adsorbents, and ethylene scavengers by catalytic oxidation. This review concludes with future research directions including molecular and genetic approaches for reducing ethylene production or responsiveness in fruits, integrated strategies, environmental considerations, and commercial applications for improving postharvest handling and fruit quality. 1. Introduction Ripening is a complex, genetically programmed, and irreversible phenomenon involving a series of physiological, biochemical, and organoleptic changes. Since this process is unstoppable, there is a finite time for commercialization and consumption where the product exhibits desirable quality attributes. Once this time has elapsed, ripening be ...'}
已核查项1:事实陈述1:"香蕉内部的甲硫氨酸在一系列激活、催化的作用下生成乙烯。"
已核查项2:事实陈述2与引用[1]的关联性及准确性:"作为呼吸跃变型水果,香蕉成熟时呼吸速率和乙烯含量会升高[1]。引用:[1] Fukano Yuya , Tachiki Yuuya. (2021). Evolutionary ecology of climacteric and non-climacteric fruitsBiol. The Royal Society, 17(9)."
已核查项3:事实陈述3与引用[2]的关联性及准确性:"同时伴随乙烯的急剧生成,呼吸速率也会加快[2]。引用:[2] Alonso-Salinas, R., López-Miranda, S., Pérez-López, A. J., & Acosta-Motos, J. R. (2024). Novel ethylene-blocking nanocomposites for extended shelf-life of climacteric fruits. Nature Food, 5(4), 298-310. https://doi.org/10.1038/s43016-024-00942-x"
(无)
本次核查共涉及3条陈述,其中2条陈述内容可靠,1条陈述内容可靠但引用存在错误。具体如下:
建议用户:
原文陈述 | 分析 | 证据 | 证据发布时间 | 观点可靠性 |
---|---|---|---|---|
香蕉内部的甲硫氨酸在一系列激活、催化的作用下生成乙烯。 | 该陈述准确描述了植物(包括香蕉)中乙烯的生物合成途径。乙烯合成始于甲硫氨酸,经过S-腺苷甲硫氨酸(SAM)、1-氨基环丙烷-1-羧酸(ACC)等中间产物,最终在ACC氧化酶催化下生成乙烯,甲硫氨酸通过杨氏循环再生。这一系列酶促反应构成了"一系列激活、催化的作用"。 | 1. "Ethylene synthesis starts from methionine, which is first converted to S-adenosylmethionine by S-adenosylmethionine synthetase."academic.oup.com 2. "Ethylene production is intimately linked with the homeostasis of its general precursor S-adenosyl-l-methionine (SAM), which experiences transcriptional and posttranslational control of its synthesising enzymes (SAM synthetase), as well as the metabolic flux through the adjacent Yang cycle. Ethylene biosynthesis continues from SAM by two dedicated enzymes: 1-aminocyclopropane-1-carboxylic (ACC) synthase (ACS) and ACC oxidase (ACO)."National Institutes of Health (.gov) 3. (图示描述) "Ethylene biosynthesis is the conversion of S-adenosyl-methionine (SAM) from methionine to ACC by ACC synthase (ACS). Methionine is reproduced within the Yang Cycle."researchgate.net 4. "In seed plants, the biosynthesis of ethylene mainly includes three important catalytic reactions (4). Methionine is first converted to S-adenosyl-L-methionine (SAM) by SAM synthetase (EC 2.5.1.6). SAM is then converted to 1-aminocyclopropane-1-carboxylic acid (ACC) by ACC synthase (ACS; EC 4.4.1.14). Last, ACC is oxidized to ethylene by ACC oxidase (ACO; EC 1.14.17.4)."science.org 5. "MTA is recycled back to the Yang cycle to recover methionine, and ACC is oxidized to ethylene by ACC oxidase (ACO)."frontiersin.org | 1. 2013-04-18 2. 2020-09-12 3. 未明确标注 4. 2021-11-10 5. 2019-12-03 | 可靠 |
作为呼吸跃变型水果,香蕉成熟时呼吸速率和乙烯含量会升高[1]。引用:[1] Fukano Yuya , Tachiki Yuuya. (2021). Evolutionary ecology of climacteric and non-climacteric fruitsBiol. The Royal Society, 17(9). | 该陈述内容准确,引用文献真实存在且支持该观点。引用[1]确实由Fukano Yuya和Tachiki Yuuya于2021年发表,其内容明确支持香蕉作为呼吸跃变型水果在成熟时呼吸速率和乙烯产量上升的观点。唯一不准确之处是期刊名称表述,应为"Biology Letters"而非"Biol. The Royal Society"。《Biology Letters》是由英国皇家学会出版的同行评审期刊,具有一定的学术影响力。 | 1. "Fukano Yuya and Tachiki Yuuya 2021 Evolutionary ecology of climacteric and non-climacteric fruits Biol. Lett. 17 20210352 http://doi.org/10.1098/rsbl.2021.0352" "Abstract: Fleshy fruits can be divided between climacteric (CL, showing a typical rise in respiration and ethylene production with ripening after harvest) and non-climacteric (NC, showing no rise)." "CL fruits (such as apple, banana, mango and avocado) usually show a rise in respiration and ethylene production with ripening after harvest."royalsocietypublishing.org 2. "简介:Biology Letters是英国皇家学会(Royal Society)出版的生物学期刊,涵盖了生物学各个领域的简短研究报告。2023年影响因子:3.812"uconf.com 3. "A Royal Society journal focused on the rapid publication of short high quality research articles, reviews and opinion pieces across the biological sciences. Impact factor: 2.8 CiteScore: 5.5"royalsocietypublishing.org | 1. 2021-09-15 2. 2024-06-14 3. 未明确标注 | 部分可靠(内容准确,引用期刊名称需修正) |
同时伴随乙烯的急剧生成,呼吸速率也会加快[2]。引用:[2] Alonso-Salinas, R., López-Miranda, S., Pérez-López, A. J., & Acosta-Motos, J. R. (2024). Novel ethylene-blocking nanocomposites for extended shelf-life of climacteric fruits. Nature Food, 5(4), 298-310. https://doi.org/10.1038/s43016-024-00942-x | 该陈述本身描述了呼吸跃变型水果成熟过程中的典型生理现象,内容准确。然而,引用[2]存在严重错误: 1. 提供的DOI链接指向一篇完全不相关的文章:"Australian assessment highlights global risks for sheep production in a warmer climate"。 2. 经多方查证,未能找到符合引用描述的文献(标题、作者、期刊、年份、卷期页码)。 3. 虽然作者团队确有相关研究,但其发表的文章与引用描述不符。 因此,虽然陈述内容本身是科学上公认的现象,但引用[2]为错误引用。 | 1. "At the onset of the climacteric period in naturally ripened fruit, ethylene production increased greatly, with a sharp peak concomitant with an increase in the rate of CO2 production (respiration)."National Institutes of Health (.gov) 2. "Background: Ethylene gas contained in fruits can increase the respiration rate. Climacteric fruits are those that experience automatic stimulation towards ripening, accompanied by an increase in respiration rate, as seen in bananas."researchgate.net 3. "呼吸跃变(respiratory climacteric)是指果实成熟到一定程度时,呼吸速率首先降低,然后突然升高,之后又下降的现象。在呼吸跃变出现时或出现前,果实内部乙烯的含量有明显的升高。 苹果 、 香蕉 、桃、 鳄梨 等均具有该现象,这一类果实被称为跃变型果实。"百度百科 4. "Mayberry, D., Lees, A. Australian assessment highlights global risks for sheep production in a warmer climate. Nat Food 5, 198–199 (2024). https://doi.org/10.1038/s43016-024-00942-x"[](/yuewen-annotation?id=4650&url=https%3A%2F%2Fwww.nature.com%2Farticles%2Fs43016-024-00942-x) 5. "Nature Food是一份国际专业期刊...影响因子:23.6...出版商:Springer Nature...Nature Food已被国际权威数据库SCIE收录。"baywatch.cn 6. "Citation: Alonso-Salinas, R.; López-Miranda, S.; Pérez-López, A.J.; Acosta-Motos J.R. Strategies to Delay Ethylene-Mediated Ripening in Climacteric Fruits: Implications for Shelf Life Extension and Postharvest Quality. Horticulturae 2024,10, 840. https://doi.org/10.3390/horticulturae10080840"[](/yuewen-annotation?id=5044&url=https%3A%2F%2Fwww.mdpi.com%2F2311-7524%2F10%2F8%2F840) | 1. 1975-05 2. 2024-08 3. 2023-11-25 4. 2024-03-08 5. 2023-12-01 6. 2024-08-08 | 内容可靠,引用不可靠 |