login
神经风格迁移在合成时间序列中的应用
2025/07/31·StepFun can make mistakes, check important info.
https://arxiv.org/pdf/2209.11306 翻译introduction部分
Reason
附件解析
思考过程

我们被要求翻译一篇名为《StyleTime: Style Transfer for Synthetic Time Series Generation》的论文的Introduction部分。用户提供了论文的arXiv链接,并上传了内容,我们需要从中提取Introduction部分并进行中文翻译。

首先,从用户提供的文本中,我们可以看到论文的完整内容,但我们需要定位到“1 INTRODUCTION”部分。根据文本,Introduction部分从“1 INTRODUCTION”开始,结束于“2 BACKGROUND”之前。

仔细阅读用户提供的内容,Introduction部分的原文如下:

"1
INTRODUCTION
Synthetic generation of labeled images has successfully been ap-
plied to improve generalization capability, and, therefore, perfor-
mance of machine learning image detection algorithms. Little work,
however, has been done on using synthetic time series to improve
generalization capability of machine learning forecasting algo-
rithms. In financial services, for example, there is interest in aug-
menting historical stock price time series with synthetic rare event
data in order to enable price prediction models generalize better on
unseen scenarios during the unexpected market shocks due to eco-
nomic events, global pandemic, flash crashes, etc. . One generally
expects models trained on such augmented time series to perform
well in practice if synthetic time series is statistically similar to
real out-of-sample data as suggested by the “train on synthetic,
test on real" (TSTR) framework [8]. Moreover, statistical realism
of the augmented time series dataset is often a requirement for
explainability purposes in applications such as finance.

Multi-agent simulation provides a means of generating synthetic
time series using a bottom-up approach. In multi-agent market
simulation, the resultant time series originate from interaction of a
large number of market agents (e.g., [4]). Because of the flexibility
to change market configuration on the agent level, multi-agent
simulation is well-suited for modeling counterfactual scenarios,
however, it is notoriously difficult to calibrate to reflect realistic
properties of the market [22].

In this paper, we propose to use neural style transfer (NST) to
improve statistical realism of synthetic time series, and use it to
stylize time series that model counterfactual scenarios for the pur-
pose of data augmentation. NST was initially introduced in [12] to
incorporate artistic style into photographs and quickly won over
the imaging community. By including the feature correlations of
multiple layers, one can obtain a stationary, multi-scale represen-
tation of the input image (i.e., the Gram matrix), which captures
its texture information but not the global arrangement – which is
called style representation. Despite receiving attention by the com-
puter vision community, there is little academic work on NST in
the context time series. In [20], NST was used to introduce realistic
noise to the seismic shock model. In [19], denoising autoencoder
combined with NST was used as a generative technique for realistic
daily price time series. The generated time series showed statistical
properties similar to historical data; additionally, the visual inspec-
tion of generated paths indicated presence of technical patterns
that are characteristic of the historical daily asset time series. Both
of the aforementioned methods extract time series style represen-
tations in the same manner they are extracted for images in [12],
which may not be suitable notions of styles for realistic time series
since they only contain information about correlations across ex-
tracted features. Further related work also includes NST for audio
and voice synthesis. This class of NST methods utilize a variety of
different techniques for extracting style representations including
frequency-domain representations (e.g., VGG-19 or wide-shallow-
random networks applied to 2D spectrograms [21]), time-domain
representations (e.g., SoundNet encoder [3] or WaveNet decoder
[17] applied to raw waveforms), and domain expert knowledge of
auditory perception [13]. Unfortunately, since these style represen-
tations are specific to audio data, they cannot be directly applied to
other domains, such as finance."

现在,我们需要将这段英文翻译成中文。翻译时要注意:

  1. 保持学术论文的严谨性和专业性。
  2. 术语要准确,如“neural style transfer”译为“神经风格迁移”,“synthetic time series”译为“合成时间序列”。
  3. 长句要合理拆分,保持中文表达习惯。
  4. 注意参考文献标记(如[8]、[12]等)保留原格式。

翻译如下:

以下是论文《StyleTime: Style Transfer for Synthetic Time Series Generation》中“Introduction”部分的完整中文翻译:


1 引言(INTRODUCTION)

带标签图像的合成生成技术已成功应用于提升机器学习图像检测算法的泛化能力,从而改善其性能。然而,利用合成时间序列提升机器学习预测算法的泛化能力的研究却相对匮乏。以金融服务为例,业界对利用合成罕见事件数据增强历史股价时间序列存在浓厚兴趣,旨在使价格预测模型在面对经济事件、全球疫情、闪崩等突发市场冲击的未知场景时表现更优。根据“在合成数据上训练,在真实数据上测试”(TSTR)框架[8]的建议,若合成时间序列在统计特性上与真实样本外数据相似,则基于此类增强数据训练的模型有望在实践中表现良好。此外,在金融等应用场景中,增强时间序列数据集的统计真实性常是模型可解释性的必要前提。

多智能体仿真提供了一种自底向上生成合成时间序列的方法。在多智能体市场仿真中,时间序列源于大量市场智能体(例如[4])的交互作用。尽管通过智能体层级调整市场配置具有灵活性,使其适用于建模反事实场景,但该方法难以校准以反映市场的真实特性[22]。

本文提出利用神经风格迁移(NST)技术提升合成时间序列的统计真实性,并用于对反事实场景建模的时间序列进行风格化,以实现数据增强。NST最初由[12]提出,旨在将艺术风格融入照片,迅速在图像领域获得广泛关注。通过融合多层特征相关性,可获得输入图像的静态多尺度表示(即Gram矩阵),该表示捕捉纹理信息而非全局结构——称为风格表示。尽管受到计算机视觉领域关注,但NST在时间序列中的应用鲜有研究。[20]利用NST为地震冲击模型引入真实噪声;[19]结合去噪自编码器与NST作为生成技术,生成逼真的日价格时间序列。生成的时间序列显示出与历史数据相似的统计特性,且生成路径的视觉检查表明其存在历史资产日序列特有的技术形态。然而,上述方法均沿用[12]中图像风格提取方式提取时间序列风格表示,由于仅包含跨特征相关性信息,此类风格定义可能不适用于真实时间序列。其他相关研究还包括音频与语音合成的NST方法,其利用频域表示(如应用于二维频谱图的VGG-19或宽浅随机网络[21])、时域表示(如应用于原始波形的SoundNet编码器[3]或WaveNet解码器[17])及听觉感知的领域专家知识[13]等技术提取风格表示。遗憾的是,这些风格表示特定于音频数据,无法直接应用于金融等其他领域。


术语说明

  • NST (Neural Style Transfer):神经风格迁移
  • TSTR (Train on Synthetic, Test on Real):在合成数据上训练,在真实数据上测试
  • Gram矩阵:特征相关性的统计表示
  • 反事实场景 (Counterfactual Scenarios):假设性情境(如市场冲击事件)

翻译要点

  1. 技术术语一致性:如“synthetic time series”统一译为“合成时间序列”,“stylization”译为“风格化”。
  2. 长句拆分:将原文复合句(如多智能体仿真描述)拆解为符合中文表达习惯的短句。
  3. 被动语态转换:如“it is notoriously difficult”译为主动句式“该方法难以校准”。
  4. 文献引用保留:参考文献标记(如[12])按学术规范保留原格式。

如需翻译其他章节(如Background或Methodology),请随时告知。